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Abstract

The coupled slosh–vehicle dynamics of a rigid body in planar atmospheric flight carrying a sloshing
liquid is considered as a multibody system with the sloshing motion modelled as a simple pendulum. The
coupled, non-linear equations for the four-degree-of-freedom multibody system are derived using the
method of Lagrangian dynamics. Careful non-dimensionalization reveals two crucial parameters that
determine the extent of coupling between the rigid body and slosh modes, and also two important
frequency parameters. Using a two-parameter continuation method, critical combinations of these four
parameters for which the coupled slosh–vehicle dynamics can become unstable are computed. Results are
displayed in the form of neutral stability curves (stability boundaries) in parameter space, and an analytical
expression incorporating the four parameters that represents the neutral stability curves is obtained.
Reduced-order linearized models and key transfer functions are derived in an effort to understand the
instability phenomenon. Physically, the sloshing motion is seen to induce a static instability, sometimes
called tumbling, in the vehicle pitch dynamics, depending on the slosh mass fraction and the location of the
slosh pendulum hinge point above the rigid vehicle center of mass.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Sloshing of liquid in tanks or containers is a problem of much concern in aerospace vehicles,
ships, industries dealing with molten metal, road vehicles used as tankers, and in nuclear power
plants. The sloshing liquid exerts forces and moments on the container walls that can cause
structural damage. In aerospace vehicles, interaction of the slosh dynamics with the control
system may have a direct impact on vehicle stability and performance. Hence, analysis of liquid
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slosh in moving containers has been a problem of considerable interest, especially in the aerospace
industry [1]. Launch vehicles and rockets usually contain significant amounts of liquid propellant
and, ever since the development of large rockets in the 1960s, this has led to problems of
instability arising from interaction between the propellant dynamics and the vehicle structural
dynamics [2]. Liquid slosh in aircraft fuel tanks, though less significant, is still a matter for
concern, especially in skewed tanks [3]. Spacecraft today tend to carry reasonably large amounts
of liquid fuel for injection from low earth orbit to their final orbit, for station-keeping, and for
precision attitude maneuvers. In these cases, the energy dissipation due to sloshing of liquid fuel
can be an important factor affecting spacecraft performance [4]. Accurate models of liquid
sloshing motion are therefore required to be able to predict the dynamics of fuel slosh and its
influence on the overall dynamics of the vehicle carrying the liquid fuel. The importance of this
subject can be gauged from the fact that a recent review reported 1319 references to literature on
liquid sloshing dynamics [5].

One approach to modelling liquid sloshing motion is to use methods based on computational
fluid dynamics, which seem especially attractive in cases of low-gravity slosh, and when dealing
with sloshing fluid in containers of arbitrary shape [6]. However, given the complexity of the
sloshing motion, these methods do not always yield reliable results (e.g., see Ref. [7, pp. 313–314]).
The traditional approach has been to model the sloshing liquid by an equivalent mechanical
model, such as an equivalent pendulum model or an equivalent mass–spring model [1,5]. When
the parameters of the equivalent pendulum or mass–spring system are correctly chosen, the forces
and moments predicted by the analysis of such a system will match with the actual hydrodynamic
forces and moments due to sloshing motion. Determination of the parameters of the equivalent
mechanical system is a difficult and tricky business that requires improved slosh rigs and advanced
methods of data analysis [8]. The idea of equivalent mechanical models has been extended to
modelling fuel slosh under low-gravity conditions [9,10]. Rotary sloshing motion under planar
tank excitation has been described by a spherical pendulum model [11,12]. Fuel tanks undergoing
rapid reorientation or large displacements can experience large-amplitude sloshing motion which
cannot be well represented by linear mechanical models. Non-linear sloshing in spherical
containers due to large tank displacement has been handled numerically under potential flow
assumptions [13], and by constructing non-linear pendulum models with cubic stiffness [14]. There
is thus a considerable body of knowledge related to modelling of the liquid slosh dynamics.

The challenge then is to be able to predict the dynamics of the coupled slosh–vehicle system
and, in particular, those critical conditions under which the coupled system may encounter an
instability. Unfortunately, very little work in this direction has been reported in the literature
[4,15]. The obvious solution is to incorporate equivalent mechanical models for slosh into a
multibody dynamics formulation for the coupled slosh–vehicle system, as suggested in Ref. [5].
Such a formulation would make it easy to include the effects of slosh in vehicle dynamics
simulation programs and would also be suitable for use with standard control system design
techniques. Instead, the present practice is to develop the equivalent mechanical models
separately, independent of the vehicle dynamics. The slosh dynamics is then externally integrated
with the vehicle dynamics program, with the coupled system appearing in the form of a feedback
loop as shown in Fig. 1. The vehicle accelerations excite the slosh dynamics, and the slosh forces
in turn act as one of the inputs to the vehicle dynamics simulation. The slosh dynamics block is
usually assumed to be a linear system and is represented by a transfer function between the slosh
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forces and the vehicle accelerations. Multiple slosh modes can be accommodated by introducing
additional transfer functions for the higher slosh modes. However, the formulation in Fig. 1 does
not account for large-amplitude sloshing motion and non-linear interactions between the slosh
dynamics and the vehicle dynamics, and between the various slosh modes themselves. Non-linear
interactions in dynamical systems can result in internal resonances between different parts of the
system [16]. Internal resonances in systems of coupled oscillators have been known to result in
instabilities [17], and such instabilities have also been observed in the flight dynamics of aerospace
vehicles [18]. There is therefore much to be gained by considering the coupled slosh–vehicle
dynamics as a multibody system.

The aim of the present paper is to study the coupled slosh–vehicle dynamics in terms of a
multibody system model. Planar motions of a vehicle in atmospheric flight with three degrees of
freedom, two translational and one rotational, are considered. A single slosh mode is considered
and is modelled as a non-linear simple pendulum oscillating in the same plane as that of the
vehicle motion. The four-degree-of-freedom equations of motion for the two-body system, vehicle
and pendulum, are developed using the method of Lagrangian dynamics [19]. The coupled, non-
linear equations of motion are suitably non-dimensionalized so as to extract the crucial
parameters that determine stability. Stability boundaries in parameter space are then computed by
carrying out a two-parameter continuation of the bifurcation point marking onset of instability.
Details of this procedure are available in standard references [20], and they are, therefore, not
elaborated on in this paper. Suffice it to say that these calculations are carried out with the
complete non-linear equations of motion and do not require the slosh and vehicle dynamics to be
either decoupled or linearized. The rest of the paper is devoted to understanding the instability
phenomenon observed in the computations. Reduced-order models are derived to indicate that
the instability arises due to coupling between the slosh dynamics and the vehicle rotational (pitch)
dynamics. Analytical expressions for the curves in parameter space marking the stability
boundaries are derived. In this process, transfer functions between the vehicle accelerations and
the forces acting on the vehicle are obtained for the coupled slosh–vehicle system. These transfer
functions are expected to be useful for control system design and parameter estimation. The
multibody framework also allows, with no additional complications, consideration of multiple
slosh modes, inclusion of non-linear slosh models, and more general motion of the vehicle in
three-dimensional space. These issues are expected to be addressed in future work.
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Fig. 1. Block diagram indicating how slosh models are integrated with the vehicle dynamics in the form of a feedback
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2. Coupled slosh–vehicle equations

The configuration of the coupled slosh–vehicle system under consideration is shown in
Fig. 2. m0 is the mass of the rigid vehicle including the mass of the fluid which does not
participate in the sloshing motion, m0R2 is the rigid vehicle moment of inertia about its center of
mass, k is the pitch stiffness parameter, m is the mass of the pendulum which represents
the fraction of the fluid that is sloshing, and l is its length which is a measure of the frequency of
the slosh mode. The hinge point of the pendulum is located a distance b from the rigid
vehicle center of mass; b is positive when it is as shown in Fig. 2, i.e., when the hinge
point is located above the rigid vehicle center of mass. The vehicle axial and transverse
displacements are represented by x and z; respectively, while the vehicle pitch angle about its
center of mass is denoted by y: The angular displacement of the pendulum from the vehicle
longitudinal axis is represented by f:
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Let the co-ordinates of the vehicle center of mass with respect to some inertial frame of
reference be x and z: Then, the co-ordinates of the pendulum mass, m; will be

xp ¼ x þ b cos y� l cosðyþ fÞ;

zp ¼ z � b sin yþ l sinðyþ fÞ: ð1Þ

The potential energy of the system, V ; and the kinetic energy, T ; are then given as

V ¼ m0gx þ mgxp þ 1
2

ky2;

T ¼ 1
2 m0ð ’x2 þ ’z2Þ þ 1

2 m0R2 ’y2 þ 1
2 mð ’xp

2 þ ’zp
2Þ; ð2Þ

where g is the acceleration due to gravity, which is assumed to be constant for simplicity, and

’zp ¼ ’z � b’y cos yþ l cosðyþ fÞð’yþ ’fÞ;

’xp ¼ ’x � b’y sin yþ l sinðyþ fÞð’yþ ’fÞ: ð3Þ

The Lagrangian of the system, L ¼ T � V ; can be written as

L ¼ 1
2

m0ð ’x2 þ ’z2Þ þ 1
2

m0R2 ’y2 þ 1
2

m½ð’z � b’y cos yþ l cos ðyþ fÞð’yþ ’fÞÞ2

þ ð ’x � b’y sin yþ l sinðyþ fÞð’yþ ’fÞÞ2� � m0gx

� mgðx þ b cos y� l cosðyþ fÞÞ � 1
2

ky2: ð4Þ

The equations of motion of the system can be derived using the above Lagrangian, as described in
Ref. [19], as follows:

ðm þ m0Þ.z þ m.yð�b cos yþ l cosðyþ fÞÞ þ ml .f cosðyþ fÞ þ mb’y2 sin y

� mlð’yþ ’fÞ2 sinðyþ fÞ ¼ Fz � cz ’z; ð5Þ

ðm þ m0Þ .x þ m.yð�b sin yþ l sinðyþ fÞÞ þ ml .f sinðyþ fÞ � mb’y2 cos y

þ mlð’yþ ’fÞ2 cosðyþ fÞ þ m0g þ mg ¼ Fx � cx ’x; ð6Þ

m0R2 .yþ m.zð�b cos yþ l cosðyþ fÞÞ þ m .xð�b sin yþ l sinðyþ fÞÞ

þ m.yðb2 þ l2 � 2bl cosfÞ þ m .fðl2 � bl cosfÞ þ 2mbl ’y ’f sin f

� mgb sin yþ mgl sinðyþ fÞ þ mbl ’f2 sinfþ ky ¼ M � cy ’y� cf ’f; ð7Þ

ml2 .fþ ml .z cosðyþ fÞ þ ml .x sinðyþ fÞ þ ml .yðl � b cosfÞ � mbl ’y2 sin f

þ mgl sinðyþ fÞ ¼ �cf ’f ð8Þ

cz; cx; cy are the vehicle motion damping coefficients that account for any dissipative mechanism,
cf is the slosh damping coefficient, Fz and Fx are the control forces (e.g., due to engine thrust) on
the vehicle in the z and x directions, respectively, while M is the resulting moment on the vehicle
about its center of mass. Eqs. (5)–(8) are a more complete version of those considered in Ref. [21],
where gravity has been ignored, and vehicle damping and pitch stiffness terms have been
neglected. These equations are therefore valid for flight both within and outside the atmosphere,
whereas the formulation in Ref. [21] is applicable only for space flight. However, in case of space
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flight, the simple pendulum model for slosh may need to be replaced by a model that accounts for
low-gravity effects.

2.1. Non-dimensionalized equations

The vehicle horizontal and vertical displacements are non-dimensionalized by the pendulum
length l:

hz ¼
z

l
; hx ¼

x

l
: ð9Þ

The forces and moments are non-dimensionalized by a combination of pendulum length l and
vehicle mass m0:

%Fz ¼
Fz

m0l
; %Fx ¼

Fx

m0l
; %M ¼

M

m0l2
: ð10Þ

The damping coefficients are non-dimensionalized in a manner similar to that for the forces and
moments, except that the pendulum mass m; rather than the vehicle mass m0; is used to non-
dimensionalize the slosh damping coefficient cf:

%cz ¼
cz

m0
; %cx ¼

cx

m0
; %cy ¼

cy

m0l2
; %cf ¼

cf

ml2
: ð11Þ

Now, dividing the force equations (5) and (6) by ðm þ m0Þl; the moment equation (7) by
ðm þ m0Þl2; and the slosh equation (8) by ml2; the non-dimensional equations are obtained as

.hz þ e.yðcos ðyþ fÞ � b cos yÞ þ e .f cosðyþ fÞ þ eb’y2 sin y

� eð’yþ ’fÞ2 sinðyþ fÞ ¼ �%czð1� eÞ ’hz þ %Fzð1� eÞ; ð12Þ

.hx þ e.yðsinðyþ fÞ � b sin yÞ þ e .f sinðyþ fÞ � eb’y2 cos y

þ eð’yþ ’fÞ2 cosðyþ fÞ þ l ¼ �%cxð1� eÞ ’hx þ %Fxð1� eÞ; ð13Þ

.yðr2ð1� eÞ þ eb2 þ e� 2eb cosfÞ þ e .fð1� b cosfÞ þ e .hzðcosðyþ fÞ � b cos yÞ

þ e .hxðsinðyþ fÞ � b sin yÞ þ eb ’f2 sin fþ 2eb’y ’f sin f� elb sin y

þ el sinðyþ fÞ þ %kð1� eÞy ¼ �%cyð1� eÞ’y� e%cf ’fþ %Mð1� eÞ; ð14Þ

.fþ .yð1� b cosfÞ þ .hz cosðyþ fÞ þ .hx sinðyþ fÞ � b’y2 sin f

þ l sinðyþ fÞ ¼ �%cf ’f: ð15Þ

Time is not non-dimensionalized; hence, every term in the non-dimensional equations actually has
the unit 1=s2: The following non-dimensional parameters:

e ¼
m

m0 þ m
; r ¼

R

l
; b ¼

b

l
ð16Þ

and the following frequency parameters:

l ¼
g

l
; %k ¼

k

m0l2
ð17Þ
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appear in the above equations. The slosh mass fraction e denotes the fraction of the total vehicle
mass, including the fluid mass, that participates in the sloshing motion. By definition, eo1: It may
be noted that in the limit as e tends to zero, all the pendulum angular displacement terms drop out
of Eqs. (12)–(14), and the vehicle dynamics equations with no slosh are correctly recovered. This
implies that the slosh mass fraction e is the single most important parameter that couples the
sloshing motion into the vehicle dynamics equations. Also, e does not appear in the pendulum
angular motion Eq. (15), which correctly implies that the pendulum dynamics is independent of
the slosh mass fraction.

When e is non-zero, the sloshing motion exerts slosh forces on the vehicle in the x and z
directions (but no moment) at the hinge point. The slosh forces then create a moment about the
rigid vehicle center of mass depending on the distance b (or b in non-dimensional form) of the
pendulum hinge point from the center of mass. Thus, when b ¼ 0; the sloshing motion does not
contribute any moment to the vehicle pitch dynamics. This can be confirmed by letting b tend to
zero in the pitch dynamics equation (14). A little algebraic manipulation shows that terms
satisfying the slosh equation (15) naturally drop out of the pitch dynamics equation (14), and on
discarding the common factor ð1� eÞ from the remaining terms, the vehicle pitch dynamics
equation with no slosh is correctly recovered.

Besides e and b; the other parameters of interest in this study are the frequency parameters, l
and %k: The inertia parameter, the non-dimensional radius of gyration, r; does not play an
important role in determining the stability of the coupled slosh–vehicle system.

3. Stability analysis

The first step in the stability analysis of Eqs. (12)–(15) is to identify the equilibrium solutions or
steady states of interest. In the most general form, the steady states are defined by the following
conditions:

.hz ¼ 0; .hx ¼ 0; ’y ¼ 0; .y ¼ 0; ’f ¼ 0; .f ¼ 0: ð18Þ

For small angles y and f; this leads to the following conditions on the variables at the steady state,
where the superscript ‘�’ denotes a steady state value:

’h�z ¼ %F�z =%cz;

’h�x ¼ %F�x �
l

1� e

� ��
%cx;

y� ¼ %M� %k �
elb
1� e

� ��
;

f� ¼ � %M� %k �
elb
1� e

� ��
: ð19Þ

Eqs. (19) immediately reveal the condition for onset of static instability as follows:

S ¼ %k �
elb
1� e

¼ 0: ð20Þ
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As the factor S approaches zero, small changes in %M� result in large changes in y� and f�: In the
limit when S ¼ 0; an infinitesimal change in %M� can cause an infinitely large change in y� and f�;
which signals onset of a static instability. In practice, however, the changes in y� and f� are not
infinite due to non-linear effects. In any case, the static instability criterion given by the factor S
does indicate that the vehicle pitch dynamics experiences an instability. When either e ¼ 0 or
b ¼ 0 as discussed earlier, the factor S reduces to simply %k > 0; and the pitch instability is no
longer possible. Thus, it is clear that the static instability in question occurs as a result of the slosh
mode coupling with the vehicle pitch dynamics. This approach to identification of instability is
commonly used in the study of flight stability and control [22,23]. The following computations
and analysis will confirm that it is indeed the vehicle pitch mode that loses stability when the
instability condition given by the factor S is attained.

3.1. Computation of stability boundaries

By selecting the steady state value of %F �
z ; %F �

x ; and %M� in the following manner:

%F �
z ¼ 0; %F �

x ¼
l

1� e
; %M� ¼ 0 ð21Þ

it is possible to obtain steady state values of the variables as identically zero, i.e., ’h�z ¼ 0; ’h�x ¼ 0;
y� ¼ 0; f� ¼ 0; and this choice is made in the present paper for convenience. Baseline values of
the various parameters are selected as follows:

e ¼ 0:3; r ¼ 1:1; b ¼ 1:5; %k ¼ 10; l ¼ 19:6; %cz ¼ %cx ¼ %cy ¼ %cf ¼ 0:1:

The above data does not pertain to any particular vehicle, but is generally representative of a launch
vehicle with a partially filled cylindrical tank located at a certain distance above the vehicle center of
mass. The stability of the steady state at zero is tracked with varying parameter e while keeping all
other parameters fixed at their baseline values. The value of e for which a zero eigenvalue of the
Jacobian matrix of the system of Eqs. (12)–(15) occurs marks the presence of a static bifurcation.
For values of e below this critical value, the zero steady state is stable, whereas for values of e larger
than the critical value, the zero steady state shows a static instability. Thus, the bifurcation point
marks the boundary between stable and unstable behavior of the zero steady state solution with
varying parameter e:

With this critical value of e as a starting point, it is possible to track the bifurcation point in the
e–b space using a two-parameter continuation technique. Such a computation can be carried out
by using any standard continuation algorithm [20], and this gives the locus of bifurcation points in
the space of two parameters, e and b: This locus of bifurcation points then marks the stability
boundary in parameter space, dividing the points in e–b space into two sets, where the zero steady
state solution is stable and unstable, respectively. Stability boundaries in e–b space for the coupled
slosh–vehicle system given by Eqs. (12)–(15), computed in this manner, for different fixed values
of the parameter %k; are plotted in Fig. 3. The figure is to be read as follows: For a fixed value of
%k ¼ 10; if b is held at 1:5 (marked in the figure), then the coupled slosh–vehicle system will have an
unstable zero steady state for e > 0:253: Stability boundaries can be similarly obtained by varying
any two of the parameters in the problem, and results of a computation in %k � l space for
different fixed values of e are shown in Fig. 4. The figure suggests that for a given slosh mass
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fraction and slosh frequency, the instability can be avoided by providing the vehicle with a
sufficiently large pitch stiffness, and, hence, there is no necessity for actuators to directly control
the sloshing motion itself. Also, the stability boundaries are independent of the slosh mode
damping coefficient and are, therefore, not altered by the introduction of slosh damping
augmentation devices such as baffles.

On carefully studying the curves in Figs. 3 and 4, it can be verified that they indeed satisfy the
instability condition in Eq. (20), and hence the stability boundaries in these figures refer to the
same phenomenon that was captured by the factor S in Eq. (20). The nature of the instability can
be confirmed by carrying out numerical simulations for two values of the parameter e: e ¼ 0:3 for
which the zero steady state is unstable, and e ¼ 0:1 for which the zero steady state is stable.
All other parameters are held fixed at their baseline values, and the response of the coupled
slosh–vehicle system in pitch angle y to an imperceptibly small perturbation is plotted in Fig. 5.
The system clearly shows a static (divergent) instability for the larger value of e in Fig. 5 with the
pitch angle y eventually settling down to an unacceptably large value. The precise value of y at
which the simulation in Fig. 5 for e ¼ 0:3 settles down is not relevant since, under conditions of
such large angular displacements, large-amplitude sloshing motion is observed, which is not well
represented by the simple pendulum model considered here. Nevertheless, the qualitative
phenomenon observed in the numerical simulation of Fig. 5 holds, namely, that slosh mass
fractions exceeding a critical value can induce a divergent instability in vehicle pitching motion
causing the vehicle to tumble [24].
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4. Reduced-order models

To better understand the instability mechanism observed in the analysis of the four-degree-of-
freedom system in the previous section, it is instructive to consider Eqs. (12)–(15) linearized about
the zero steady state. The corresponding steady state values of the forces and the moment
have been listed in Eq. (21). Defining small perturbations about the steady state as
d ’hz; d ’hx; dy; d’y; df; d ’f; and small perturbations in the forces and the moment as d %Fx; d %Fz and
d %M; the linearized equations can be derived as follows:

d .hz þ ed.yð1� bÞ þ ed .f ¼ �%czð1� eÞd ’hz þ d %Fzð1� eÞ; ð22Þ

d .hx ¼ �%cxð1� eÞd ’hx þ d %Fxð1� eÞ; ð23Þ

d.yðr2ð1� eÞ þ eð1� bÞ2Þ þ ed .fð1� bÞ þ ed .hzð1� bÞ þ elð1� bÞdyþ eldf

þ %kð1� eÞdy ¼ �%cyð1� eÞd’y� e%cfd ’fþ d %Mð1� eÞ; ð24Þ

d .fþ d.yð1� bÞ þ d .hz þ lðdyþ dfÞ ¼ �%cfd ’f: ð25Þ

A close look at Eqs. (22)–(25) reveals that the linearized x-dynamics is completely decoupled from
the rest of the slosh–vehicle dynamics. It is clear from Eq. (23) that the small perturbation
x-dynamics is itself stable as long as the x damping coefficient %cx is positive. Thus, it can be safely
concluded that the x-dynamics neither participates in nor contributes to the instability
phenomenon observed in the previous section. It therefore makes sense to ignore the x-dynamics
given by Eq. (23) and consider a reduced-order three-degree-of-freedom system consisting of
Eqs. (22), (24) and (25).

4.1. Transfer functions

The coupling between the sloshing motion and the vehicle degrees of freedom can be studied by
deriving transfer functions for the vehicle dynamics in the presence of the slosh degree of freedom.
The transfer functions of interest, derived from the reduced-order system with three degrees of
freedom, are the following:

GzðsÞ ¼
d ’hzðsÞ
d %FzðsÞ

¼
Nz

D
; GyðsÞ ¼

dyðsÞ
d %MðsÞ

¼
Ny

D
; ð26Þ
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where

Nz ¼ r2s4 þ %cy þ r2
%cf þ

e%cfð1� bÞ2

ð1� eÞ

 !
s3

þ %k �
elb
1� e

� �
þ %cf %cy þ l r2 þ

eb2

1� e

� �
�
e%cfð1� bÞ

1� e

� �
s2

þ %cf %k �
elb
1� e

� �
þ l%cy

� �
s þ l %k �

elb
1� e

� �
; ð27Þ

Ny ¼ s3 þ %cz þ
%cf

1� e

� �
s2 þ

l
1� e

þ %cz %cf

� �
s þ l%cz; ð28Þ

D ¼ r2s5 þ %cy þ r2
%cz þ

%cf

1� e

� �
�

e%cfb
1� e

ð1� bÞ
� �

s4

þ %k �
elb
1� e

� �
þ r2 þ

eb2

1� e

� �
ðlþ %cz %cfÞ þ %cy %cz þ

%cf

1� e

� �
�

e%cfb
1� e

%cz

� �
s3

þ %cz þ
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� �
: ð29Þ

For non-zero e and b; the above expressions for the vehicle transfer functions are quite
complicated and capture the effect of the slosh mode coupling into the vehicle dynamics. In
particular, note that the characteristic polynomial D in Eq. (29) is of fifth order, and hence, the
system poles, given by the roots of the characteristic polynomial, are five in number. Of these, it
will be seen that the slosh dynamics always contributes a pair of complex conjugate poles, while
the remaining three poles can be attributed to the vehicle dynamic modes.

Considering the limit of e tending to zero, the expressions in Eqs. (27)–(29) factor as follows:

Nz ¼ ðr2s2 þ %cys þ %kÞðs2 þ %cfs þ lÞ;

Ny ¼ ðs þ %czÞðs2 þ %cfs þ lÞ;

D ¼ ðr2s2 þ %cys þ %kÞðs þ %czÞðs2 þ %cfs þ lÞ ð30Þ

which, after canceling out common factors, give the following simple expressions for the vehicle
dynamics with the slosh mode decoupled:

Gz ¼
1

ðs þ %czÞ
; Gy ¼

1

ðr2s2 þ %cys þ %kÞ
: ð31Þ

Also, for non-zero e and in the limit as b tends to zero, Eq. (29) factors as follows:

D ¼ ðr2s2 þ %cys þ %kÞ s3 þ %cz þ
%cf

1� e

� �
s2 þ

l
1� e

þ %cz %cf

� �
s þ l%cz

� �
ð32Þ
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and the resulting vehicle pitch transfer function Gy takes the simple form

Gy ¼
1

ðr2s2 þ %cys þ %kÞ
ð33Þ

thereby indicating that the slosh mode does not couple into the vehicle pitch dynamics when
b ¼ 0: It is also interesting to consider the case where the factor S in Eq. (20) is put to zero in
Eqs. (27)–(29). This results in a term s factoring out of the expressions for Nz and D; but not in Ny:
Then, the transfer function Gz shows a cubic numerator Nz and a quartic denominator D; after
canceling out the common factor s; whereas the pitch transfer function Gy retains a fifth order
polynomial for the denominator D; but with a pole at zero due to the factor s: The presence of a
pole at zero is an indicator of static instability, and it is possible to conclude from the above
analysis that the instability occurs in the vehicle pitch dynamics given by the transfer function Gy;
but not in the vehicle translational dynamics represented by Gz:

4.2. Root locus analysis

The conclusions drawn in the previous section can be confirmed by plotting the locus of the
roots of the numerator and denominator polynomials in the expressions for the transfer functions
in Eq. (26). For reasons of economy, root locus plots are shown here only for the case of the pitch
transfer function GyðsÞ: Fig. 6 shows the locus of the roots of Ny (dashed line) and D (full line)
with e as the varying parameter. A similar root locus plot with b as the varying parameter is
plotted in Fig. 7. The roots in each case are plotted for the parameter varying between zero
(marked on the figures by an open circle) and twice its baseline value. Both Figs. 6 and 7 show
three sets of roots of the polynomial D (also called poles) and two sets of roots of the polynomial
Ny (also called zeros):

1. A real pole in the left half-plane, which represents the vehicle translational motion, along with a
real zero. The pole and zero are colocated when either e ¼ 0 or b ¼ 0: With varying e; both the
pole and zero move to the right, but stay in the left half-plane, whereas with varying b; the pole-
shifts slightly but the zero is unaffected. Thus, this root does not cross over into the right half-
plane and therefore does not cause instability.
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2. A pair of complex slosh poles along with a pair of complex zeros, both of which remain in the
left half-plane when either e or b is varied. As anticipated, for e ¼ 0 or b ¼ 0; the slosh poles
and zeros are colocated and pole-zero cancellation takes place, thus decoupling the slosh and
pitch dynamics.

3. A pair of complex poles without accompanying zero, which represent the pitching motion.
As either e or b is varied, this complex conjugate pair moves towards the real axis and
eventually forms two real roots. For a critical value of e or b; one of these roots crosses over
into the right half-plane at the origin, causing an instability. This is the instability that was
captured in the stability boundaries of Figs. 3 and 4, and by the instability condition given in
Eq. (20).

The root locus analysis thus confirms that, when the sloshing motion couples into the pitch
dynamics by way of a parameter such as e or b; there is a critical condition beyond which the pitch
dynamics is destabilized. The critical condition for onset of instability can be easily captured by
computing the stability boundaries as demonstrated in Figs. 3 and 4.

Further confirmation of the role of the pitch dynamics in the instability phenomenon due to
slosh–vehicle coupling may be obtained by considering a two-degree-of-freedom system consisting
of vehicle translational motion and a slosh mode, but no pitch dynamics. A system of this form is
called an elliptical pendulum [25] and it has been shown that in this case the coupled slosh–vehicle
dynamics does not experience an instability [26].

5. Conclusions

It is seen that sloshing liquid in a tank being carried by a rigid body, such as a launch vehicle,
can destabilize the coupled slosh–vehicle system. The instability is more likely in case of a larger
slosh mass fraction, or in case the slosh mass is located at a greater distance above the vehicle
center of mass. The coupled slosh–vehicle dynamics can be modelled as a multibody system and a
two-parameter continuation method can be easily used to compute the stability boundaries for
this system in parameter space. Stability analysis using the continuation method provides the
advantage of not requiring the multibody system equations to be either linearized or decoupled,
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while, at the same time, offering some physical insight in terms of the various parameter
combinations that may induce the instability. The multibody framework also allows, with no
additional complications, consideration of multiple slosh modes, inclusion of non-linear slosh
models, and more general motion of the vehicle in three-dimensional space. It must be mentioned
that the accuracy of the results obtained obviously depends on the validity of the pendulum model
used to model slosh, and on the accuracy with which estimates of the equivalent pendulum
parameters are available. However, these factors are not expected to change the qualitative
features of the conclusions drawn from this study.

Appendix A. Nomenclature

b distance of pendulum hinge point from rigid body center of mass
cz damping coefficient for lateral translation motion
cx damping coefficient for axial translation motion
cy damping coefficient for angular motion of rigid body
cf damping coefficient for pendulum (slosh) mass
Fz lateral control force on the vehicle
Fx axial control force on the vehicle
g acceleration due to gravity
hz non-dimensional lateral displacement of the vehicle
hx non-dimensional axial displacement of the vehicle
k stiffness parameter for angular (pitch) motion of rigid body
L Lagrangian
l length of pendulum
M external moment at rigid body center of mass
m0 mass of the rigid body
m mass of sloshing pendulum
R radius of gyration of the rigid body about the center of mass
T kinetic energy
V potential energy
x horizontal displacement of center of mass of the rigid body
xp horizontal displacement of pendulum mass
z vertical displacement of center of mass of the rigid body
zp vertical displacement of pendulum mass
b non-dimensional distance of pendulum hinge point from rigid body center of mass
f angular displacement of the pendulum
y angular displacement of the rigid body
e fraction of total mass of the system participating in sloshing motion
l natural frequency of sloshing motion
r non-dimensional radius of gyration of vehicle

Superscript

ð Þ indicates non-dimensional form of quantity in ð Þ
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